Follow through between parts of Question 1 should be allowed for the value of \boldsymbol{a} found in part (i) into parts (ii) and (iii).

| $\mathbf{1}$ | (i) | $v^{2}-u^{2}=2 a s$
 $31^{2}-12^{2}=2 \times 215 \times a$
 $a=1.9$ so $1.9 \mathrm{~ms}^{-2}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | M1 | Selection and use of appropriate equation(s) |
| A1 | | | | |
| [2] | | | | |

(iii)	$\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \\ & \frac{215}{2}=12 t+\frac{1}{2} \times 1.9 \times t^{2} \\ & \left(t=\frac{-12 \pm \sqrt{12^{2}+4 \times 0.95 \times 107.5}}{1.9}\right) \\ & t=6.055(\text { or }-18.69) \end{aligned}$	M1 M1 A1 [3]	Selection and use of $s=u t+\frac{1}{2} a t^{2}$, oe. Correct elements but condone minor arithmetic errors. Use of quadratic formula (may be implied by answer), oe. FT their a only.
	Alternative: Finding a 2-stage method $\begin{aligned} & v^{2}-u^{2}=2 a s \text { and } s=\frac{(u+v)}{2} t \\ & v= \pm \sqrt{12^{2}+2 \times 1.9 \times 107.5}=(\pm) 23.505 \ldots \\ & s=\frac{(u+v)}{2} t \Rightarrow t=\frac{2 \times 107.5}{(12+23.505 \ldots)} \quad\left(\text { or } t=\frac{2 \times 107.5}{(12-23.505 \ldots)}\right) \\ & t=6.055(\text { or } 18.69) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Selection and use of a complete valid 2-stage method Using the output from the first stage to find t FT their a only.

| (iv) | Because it is accelerating, it travels less fast in the first half
 of the distance and so takes more time. | B1 | The answer must refer to the two parts of the distance (or "the same
 distance") so no credit is given to answers like
 "Because it is accelerating" |
| :---: | :---: | :--- | :--- | :--- |
| and "Because its speed is not uniform". | | | |
| and successful answers will refer to the times to cover AM and MB but | | | |
| Most may be implicit. So B1 should be given for an answer like | | | |
| "It is travelling faster between M and B than it is between A and M" | | | |
| notice that the fact that the acceleration is uniform is irrelevant. | | | |

PhysicsAndMathsTutor.com

Question			er	Marks	Guidance
2	(iii)	(A)	$\begin{aligned} & \text { Flight time }=\frac{15}{4.9} \\ & \text { Range }=20 \times \frac{15}{4.9}=61.22 \end{aligned}$	B1 [1]	Allow FT from part (ii) for a correct argument that they should be the same
2	(iii)	(B)	No eg angle of projection 45°	M1 A1 [2]	Attempt at disproof or counter-example. There must be some reference to the angle. Complete argument

Question		Answer	Marks	Guidance
3	(i)	$\begin{aligned} & v=\int(6 t-12) \mathrm{d} t \\ & v=3 t^{2}-12 t+c \\ & c=9 \\ & t=3 \Rightarrow v=3 \times 3^{2}-12 \times 3+9=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { E1 } \\ & \text { [4] } \end{aligned}$	Attempt to integrate Condone no c if implied by subsequent working (eg adding 9 to the expression) Or by showing that $(t-3)$ is a factor of $3 t^{2}-12 t+9$
	(ii)	$\begin{aligned} & s=\int\left(3 t^{2}-12 t+9\right) \mathrm{d} t \\ & s=t^{3}-6 t^{2}+9 t-2 \end{aligned}$ When $t=2, s=0$. (It is at the origin.)	M1 A1 B1 [3]	Attempt to integrate Ft from part (i) A correct value of c is required. Ft from part (i). Cao

Question		Answer	Marks	Guidance
4	(i)	$\begin{aligned} & \text { At C: } s=u t+\frac{1}{2} a t^{2} \\ & 500=5 \times 20+0.5 \times a \times 20^{2} \\ & a=2\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	M1 A1 [2]	M1 for a method which if correctly applied would give a. Cao Special case If 800 is used for s instead of 500 , giving $a=3.5$, treat this as a misread. Annotate it as SC SC and give M1 A0 in this part
4	(ii)	At B: $v^{2}-u^{2}=2 a s$ $v^{2}-5^{2}=2 \times 2 \times 300$ $v=35 \quad$ Speed is $35 \mathrm{~m} \mathrm{~s}^{-1}$ At B: $v=u+a t$ $35=5+2 \times t$ $t=15$ Time is 15 s	M1 A1 A1 [3]	M1 for a method which if correctly applied would give either v or t Apply FT from incorrect a from part (i) for the M mark only Cao. No FT from part (i) except for SC1 for 46.2 following $a=3.5$ after the use of $s=800$. Cao. No FT from part (i) except for SC1 for 11.7 following $a=3.5$ after the use of $s=800$.

		mark	comment
5	either for u first: $8=\frac{1}{2}(u+2.25) \times 32$ $\begin{aligned} & u=-1.75 \text { so } 1.75 \mathrm{~m} \mathrm{~s}^{-1} \\ & 2.25=-1.75+32 a \\ & a=0.125 \text { so } 0.125 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ Directions of u and a are defined	M1 A1 M1 F1 F1 5	Using $s=\frac{1}{2}(u+v) t$ Use of any appropriate suvat with their values and correct signs Sign must be consistent with their u, FT from their value of u Establish directions of both u and a in terms of A and B. May be shown by a diagram, eg showing A and B and a line between them together with an arrow to show the positive direction. Without a diagram, the wording must be absolutely clear: eg do not accept left/right, forwards/backwards without a diagram or more explanation. Dependent on both M marks.
	Or for a first: $8=2.25 \times 32-\frac{1}{2} \times a \times 32^{2}$ $\begin{aligned} & a=0.125 \text { so } 0.125 \mathrm{~m} \mathrm{~s}^{-2} \\ & 2.25=u+32 \times 0.125 \\ & u=-1.75 \text { so } 1.75 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Directions of u and a are defined	M1 A1 M1 F1 F1 5	Using $s=v t-\frac{1}{2} a t^{2}$ Use of any appropriate suvat with their values and correct signs Sign must be consistent with their a, FT from their value of a Establish directions of both u and a in terms of A and B. May be shown by a diagram, eg showing A and B and a line between them together with an arrow to show the positive direction. Without a diagram, the wording must be absolutely clear: eg do not accept left/right, forwards/backwards without a diagram or more explanation. Dependent on both M marks.
	Or using simultaneous equations Set up one relevant equation with a and u. Set up second relevant equation with a and u. Solving to find $u=-1.75$ so $1.75 \mathrm{~m} \mathrm{~s}^{-1}$ Solving to find $a=0.125$ so $0.125 \mathrm{~m} \mathrm{~s}^{-2}$ Directions of u and a are defined	M1 M1 A1 F1 F1 5	Using one of $v=u+a t, s=u t+1 / 2 a t^{2}$ and $v^{2}=u^{2}+2 a s$ Using another of $v=u+a t, s=u t+1 / 2 a t^{2}$ and $v^{2}=u^{2}+2 a s$ FT from their value of u or a, whichever found first Establish directions of both u and a in terms of A and B. May be shown by a diagram, eg showing A and B and a line between them together with an arrow to show the positive direction. Without a diagram, the wording must be absolutely clear: eg do not accept left/right, forwards/backwards without a diagram or more explanation. Dependent on both M marks.
		5	

		mark	comment	sub
6(i)	$\begin{array}{l}\text { The distance travelled by P is } \\ 0.5 \times 0.5 \times t^{2} \\ \text { The distance travelled by Q is } 10 t\end{array}$	$\begin{array}{l}\text { B1 } \\ \text { B1 }\end{array}$	Accept $10 t+125$ if used correctly below.	

